基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前文本情感分析中神经网络模型训练时间长,上下文信息学习不足的问题,该文提出了一种结合混合神经网络和条件随机场(conditional random fields,CRF)的模型.该模型将神经网络作为语言模型,结合了卷积神经网络(convolutional neural networks,CNN)与双向门控循环单元(bidirectional gated recurrent unit,Bi-GRU)两种神经网络获得的语义信息和结构特征,采用条件随机场模型作为分类器,计算情感概率分布,进而能够准确地判断情感类别.该文的模型在NLPCC 2014数据集上进行了测试,准确率为91.74%,与其他分类模型相比,可以获得更好的准确性和F值.
推荐文章
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
双通道混合神经网络的文本情感分析模型
混合神经网络
特征融合
注意力机制
双向门循环单元
胶囊网络
结合词性特征与卷积神经网络的文本情感分析
自然语言处理
情感分析
深度学习
卷积神经网络
文本表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 混合神经网络和条件随机场相结合的文本情感分析
来源期刊 智能系统学报 学科
关键词 卷积神经网络 门控循环单元 条件随机场 文本情感分析 语言模型 语义特征 上下文信息 分类器
年,卷(期) 2021,(2) 所属期刊栏目 机器学习|Intelligent Systems
研究方向 页码范围 202-209
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.11992/tis.201907041
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (79)
共引文献  (218)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1952(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(8)
  • 参考文献(1)
  • 二级参考文献(7)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(9)
  • 参考文献(3)
  • 二级参考文献(6)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
门控循环单元
条件随机场
文本情感分析
语言模型
语义特征
上下文信息
分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能系统学报
双月刊
1673-4785
23-1538/TP
大16开
哈尔滨市南岗区南通大街145-1号楼
2006
chi
出版文献量(篇)
2770
总下载数(次)
11
总被引数(次)
12401
论文1v1指导