基于知识库的问答是自然语言处理研究热点之一,在针对知识库问答的方法中,传统的字向量和词向量无法很好地表示问句上下文的语义信息、循环神经网络并行计算能力不足和没有考虑句子中周围词对当前词的影响、卷积神经网络不考虑字在问句中位置信息等问题.为了解决上述问题,论文提出了使用B E RT模型结合循环神经网络和卷积神经网络模型的研究方法.在开源SimpleQuestion数据集上使用文中提出的方法,可使问句命名实体识别任务中f1-score提升了3%,问句关系分类任务准确率提升1%,最终答案生成任务准确率提升3.5%.实验表明,使用B E RT模型可以增强这些传统模型的效果.