基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper,we establish the global existence and uniqueness of the solution of the Cauchy problem of a one-dimensional compressible isentropic Euler system for a Chap-lygin gas with large initial data in the space L1loc.The hypotheses on the initial data may be the least requirement to ensure the existence of a weak solution in the Lebesgue measurable sense.The novelty and also the essence of the difficulty of the problem lie in the fact that we have neither the requirement on the local boundedness of the density nor that which is bounded away from vacuum.We develop the previous results on this degenerate system.The method used is Lagrangian representation,the essence of which is characteristic analysis.The key point is to prove the existence of the Lagrangian representation and the absolute continuity of the potentials constructed with respect to the space and the time variables.We achieve this by finding a property of the fundamental theorem of calculus for Lebesgue integration,which is a sufficient and necessary condition for judging whether a monotone continuous function is absolutely continuous.The assumptions on the initial data in this paper are believed to also be necessary for ruling out the formation of Dirac singularity of density.The ideas and techniques developed here may be useful for other nonlinear problems involving similar difficulties.
推荐文章
冲击响应界限控制的L1方法
冲击响应
振动控制
L1(l1)最优控制
灵敏度
HPV-6/11 L1/E6、HPV-6/11 L1/E7嵌合DNA疫苗质粒的构建
人乳头瘤病毒6/11型
DNA疫苗
宫颈癌
基于戴帽L1范数的双支持向量机
双支持向量机
L1范数
L2范数
戴帽L1范数
损失函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 EXISTENCE AND UNIQUENESS OF THE GLOBAL L1 SOLUTION OF THE EULER EQUATIONS FOR CHAPLYGIN GAS
来源期刊 数学物理学报(英文版) 学科
关键词
年,卷(期) 2021,(3) 所属期刊栏目
研究方向 页码范围 941-958
页数 18页 分类号
字数 语种 英文
DOI 10.3969/j.issn.0252-9602.2021.03.019
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
数学物理学报(英文版)
双月刊
0252-9602
42-1227/O
武昌小洪山(武汉市71010信箱)
eng
出版文献量(篇)
2544
总下载数(次)
0
总被引数(次)
7016
论文1v1指导