基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视频目标检测跟踪算法一直是计算机视觉领域的研究热点,目前大部分方法均需人工采集样本训练检测模型,搭建目标检测跟踪系统.当目标成像条件发生变化时,需重新采集样本,训练模型,调试整个检测跟踪系统,耗费大量人力、物力.本文提出一种基于少量样本学习的多目标检测跟踪算法,只需在监控视频第一帧指定待检测目标,即可自主生成混合分类模型,进行目标检测.采用在线渐进学习算法学习目标姿态变化,更新该模型.结合基于颜色的目标跟踪算法,自动构建高精度目标检测跟踪系统.整个过程无需手工采集、标注训练样本.因此,易于扩展到其它监控场景,通过自主学习形成该场景专用的检测跟踪系统,实现不同监控环境下,不同成像条件下都有较好的检测跟踪效果.实验表明,本方法能自主学习多种监控场景下的目标姿态,无需手工标注训练样本,在基于在线学习的算法中有最佳的检测精度,此外也取得了和离线目标检测跟踪系统相似的性能.
推荐文章
基于多信息融合的多目标跟踪方法研究
计算机视觉
深度学习
多目标跟踪
目标遮挡
双分支网络
基于自适应差分的多目标检测和跟踪
差分图像
自适应阈值
目标检测
多目标跟踪
基于权值选择的多雷达多目标检测前跟踪算法
粒子滤波
检测前跟踪
多雷达
权值选择
权值修正
基于全局最小化活动轮廓的多目标检测跟踪
活动轮廓
全局最小化
多目标跟踪
最近邻法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于少量样本学习的多目标检测跟踪方法
来源期刊 电子学报 学科 工学
关键词 少量样本学习 多目标检测 多目标跟踪 在线学习
年,卷(期) 2021,(1) 所属期刊栏目 学术论文
研究方向 页码范围 183-191
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.12263/DZXB.20180045
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (2)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1956(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
少量样本学习
多目标检测
多目标跟踪
在线学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
论文1v1指导