作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
自动驾驶车辆的本质是轮式移动机器人,是一个集模式识别、环境感知、规划决策和智能控制等功能于一体的综合系统.人工智能和机器学习领域的进步极大推动了自动驾驶技术的发展.当前主流的机器学习方法分为:监督学习、非监督学习和强化学习3种.强化学习方法更适用于复杂交通场景下自动驾驶系统决策和控制的智能处理,有利于提高自动驾驶的舒适性和安全性.深度学习和强化学习相结合产生的深度强化学习方法成为机器学习领域中的热门研究方向.首先对自动驾驶技术、强化学习方法以及自动驾驶控制架构进行简要介绍,并阐述了强化学习方法的基本原理和研究现状.随后重点阐述了强化学习方法在自动驾驶控制领域的研究历史和现状,并结合北京联合大学智能车研究团队的研究和测试工作介绍了典型的基于强化学习的自动驾驶控制技术应用,讨论了深度强化学习的潜力.最后提出了强化学习方法在自动驾驶控制领域研究和应用时遇到的困难和挑战,包括真实环境下自动驾驶安全性、多智能体强化学习和符合人类驾驶特性的奖励函数设计等.研究有助于深入了解强化学习方法在自动驾驶控制方面的优势和局限性,在应用中也可作为自动驾驶控制系统的设计参考.
推荐文章
自动驾驶仿真技术研究现状
计算机仿真
自动驾驶系统
测试方法
软件现状
自动驾驶汽车横向运动控制方法综述
自动驾驶
横向运动控制
纵/横向耦合
车联网
自动驾驶控制系统芯片技术现状与应用分析
自动驾驶
计算芯片
域控制器
控制器架构
自动驾驶制动控制方案的研究
车辆工程
自动驾驶
制动
MATLAB
自动控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 强化学习的自动驾驶控制技术研究进展
来源期刊 中国图象图形学报 学科 工学
关键词 自动驾驶 决策控制 马尔可夫决策过程 强化学习 数据驱动 自主学习
年,卷(期) 2021,(1) 所属期刊栏目 综述
研究方向 页码范围 28-35
页数 8页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (56)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(1)
  • 二级参考文献(0)
1961(1)
  • 参考文献(1)
  • 二级参考文献(0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1981(1)
  • 参考文献(1)
  • 二级参考文献(0)
1983(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(2)
  • 参考文献(2)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(5)
  • 参考文献(3)
  • 二级参考文献(2)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
自动驾驶
决策控制
马尔可夫决策过程
强化学习
数据驱动
自主学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导