基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的微机电系统(MEMS)惯性传感器误差补偿技术通常采用多元线性回归误差模型,未考虑传感器误差的非线性特性,不能实现精确的误差补偿.针对以上问题,提出了一种基于径向基函数神经网络的微惯性测量单元误差补偿模型,将MEMS惯性传感器三轴测量值和真实值作为样本,对网络进行训练,利用训练好的网络对MEMS加速度计和陀螺仪进行误差补偿.实验结果表明:与多元线性回归误差模型相比,神经网络对惯性传感器具有更好的降噪滤波效果;且基于径向基函数神经网络的惯性传感器误差补偿精度较另外2种模型提升了1~2个数量级.所提方案能够有效地补偿MEMS惯性传感器误差.
推荐文章
基于神经网络融合的传感器温度误差补偿
温度误差补偿
神经网络
数据融合
漏磁检测
基于OBF神经网络的温度传感器非线性补偿方法
热敏电阻
传感器
非线性补偿
OBF神经网络
一种基于IGA-RBF神经网络的传感器动态特性补偿算法
动态补偿
RBF神经网络
遗传算法
瓦斯传感器
用RBF神经网络改善传感器输出特性
径向基函数
传感器
输出特性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的MEMS惯性传感器误差补偿方法
来源期刊 重庆理工大学学报(自然科学版) 学科 工学
关键词 惯性传感器 多元线性回归 RBF神经网络 误差补偿模型
年,卷(期) 2021,(1) 所属期刊栏目 电气·电子
研究方向 页码范围 197-202
页数 6页 分类号 TP212.1
字数 语种 中文
DOI 10.3969/j.issn.1674-8425(z).2021.01.025
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (123)
共引文献  (14)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(7)
  • 参考文献(0)
  • 二级参考文献(7)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(19)
  • 参考文献(0)
  • 二级参考文献(19)
2017(17)
  • 参考文献(1)
  • 二级参考文献(16)
2018(11)
  • 参考文献(5)
  • 二级参考文献(6)
2019(4)
  • 参考文献(3)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
惯性传感器
多元线性回归
RBF神经网络
误差补偿模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
重庆理工大学学报(自然科学版)
月刊
1674-8425
50-1205/T
重庆市九龙坡区杨家坪
chi
出版文献量(篇)
7998
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导