基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对仪表液晶显示字符识别问题,提出一种结合了卷积神经网络(CNN)和支持向量机(SVM)的字符识别方法.分别采用具有并联结构的CNN模型和基于梯度方向直方图(HOG)特征的SVM方法构建基本分类器,当2个分类器的结果存在冲突时,利用CNN的softmax输出最大值判决最终结果,当其大于设定阈值时采用CNN分类器的结果,反之采用SVM分类器的结果.建立字符图像的误差模型并利用仿真方法构建了数据集用于分类器的训练和测试,给出一种基于投票原理的最优阈值的估计算法.在MNIST和仿真数据集上的测试实验结果表明,最优阈值估计算法的结果可靠,组合分类器的准确率较2种单一分类器均有提高,在实际测试系统上其准确率达到99.81%,验证了该组合分类器方法对液晶字符识别问题的有效性;在C1FAR-10数据集上的实验结果验证了该方法也可用于其他分类问题.
推荐文章
用于车牌字符识别的SVM算法
支持矢量机(SVM)
车牌字符识别
最优分类面
核函数
基于串行分类器的字符识别
字符识别
模式识别
特征提取
BP网络
串行分类器
基于SVM混合网络的车牌字符识别研究
字符识别
支持向量机
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 液晶字符识别的CNN和SVM组合分类器
来源期刊 图学学报 学科
关键词 计算机视觉 机器学习 液晶字符识别 支持向量机 卷积神经网络
年,卷(期) 2021,(1) 所属期刊栏目 图像处理与计算机视觉|Image Processing and Computer Vision
研究方向 页码范围 15-22
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.11996/JG.j.2095-302X.2021010015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (96)
共引文献  (41)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(7)
  • 参考文献(0)
  • 二级参考文献(7)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(17)
  • 参考文献(2)
  • 二级参考文献(15)
2016(14)
  • 参考文献(1)
  • 二级参考文献(13)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机视觉
机器学习
液晶字符识别
支持向量机
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
图学学报
双月刊
2095-302X
10-1034/T
16开
北京海淀学院路37号中国图学学会学报编辑部
1980
chi
出版文献量(篇)
3336
总下载数(次)
7
论文1v1指导