基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着电力计量业务的不断扩展,迫切需要由业务信息、技术知识、行业标准及其内在联系所组成的电力计量知识图谱,为电网的决策和发展提供更为全面有效的支持.命名实体识别是构建知识图谱的基础.针对电力计量领域需要,结合中文分词技术特点,基于联合学习思想,提出了一种基于联合学习的中文电力计量命名实体识别技术.该技术联合CNN-BLSTM-CRF模型与整合词典知识的分词模型,使其共享实体类别和置信度;同时将2个模型的先后计算顺序改为并行计算,减少了识别误差累积.结果表明,在不需要人工构建特征的情况下,方法的正确率、召回率、F值等均显著优于以往方法.
推荐文章
基于位置敏感Embedding的中文命名实体识别
命名实体识别
表示学习
Embedding
多尺度聚类
条件随机场
基于BLSTM-CRF中文领域命名实体识别框架设计
BLSTM-CRF
CBOW
Boson
命名实体识别
基于深度学习的医疗命名实体识别
实体识别
数据挖掘
深度学习
医疗信息
BioTrHMM:基于迁移学习的生物医学命名实体识别算法
迁移学习
隐马尔可夫模型
命名实体识别
文本挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于联合神经网络学习的中文电力计量命名实体识别
来源期刊 浙江大学学报(理学版) 学科
关键词 电力计量 联合学习 命名实体识别 分词
年,卷(期) 2021,(3) 所属期刊栏目 数学与计算机科学|Mathematics and Computer Science
研究方向 页码范围 321-330
页数 10页 分类号 TP391.1
字数 语种 中文
DOI 10.3785/j.issn.1008-9497.2021.03.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (30)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(15)
  • 参考文献(7)
  • 二级参考文献(8)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力计量
联合学习
命名实体识别
分词
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(理学版)
双月刊
1008-9497
33-1246/N
大16开
杭州市天目山路148号浙江大学
32-36
1956
chi
出版文献量(篇)
3051
总下载数(次)
2
论文1v1指导