基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对深度学习方法在视觉上检测安全帽佩戴过程中存在对施工人员等小目标漏检率高和实际中需达到实时监测的要求,提出一种改进的目标检测模型.首先,在该算法的原网络上加入残差网络模块,使得小目标的特征不会随着网络的加深而导致梯度消失的情况,且能更好地改善对小目标的漏检率高的问题.然后,对损失函数与筛选预测框进行了优化.理论分析与结果表明:与原算法相比,改进后算法的识别准确率提高了4.6%,召回率提高了3.9%,平均精确率均值提高了4.1%,帧率达63帧/s.可见提出的改进算法能更好地提取小目标特征,同时也减少了边界框位置误差.
推荐文章
基于Swin Transformer的YOLOv5安全帽佩戴检测方法
安全帽佩戴检测
YOLOv5
Swin Transformer
Ghost
新型跨尺度特征融合
K-means++
基于改进Faster RCNN的安全帽佩戴检测研究
安全帽佩戴检测
FasterRCNN
多尺度训练
在线困难样本挖掘
多部件结合
基于深度学习的安全帽检测方法研究
安全帽
不安全行为
深度学习
卷积神经网络
基于改进YOLOv5的电厂人员绝缘手套佩戴检测
绝缘手套
YOLOv5s
自校准卷积
注意力机制
激活函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进Tiny-yolov3算法的安全帽佩戴检测
来源期刊 湖南工业大学学报 学科 工学
关键词 目标检测 目标特征 损失函数 残差网络
年,卷(期) 2021,(2) 所属期刊栏目 计算机科学与技术
研究方向 页码范围 46-50
页数 5页 分类号 TP183|TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1673-9833.2021.02.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (29)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
目标特征
损失函数
残差网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南工业大学学报
双月刊
1673-9833
43-1468/T
大16开
湖南省株洲市天元区泰山路88号
1987
chi
出版文献量(篇)
3955
总下载数(次)
6
论文1v1指导