基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了优化对于Web日志记录的用户异常行为的检测能力,提出一种基于决策树算法的Web用户异常行为检测算法.从给定已有标签的数据集中,根据Relief-F算法来度量特征,引进混淆矩阵的概念选择合适的阈值 ε,选取比阈值大的统计量分量,其所对应的的特征组成用来训练学习器的特征集.将划分后的相关特征集利用C4.5算法构建模型,形成一种新的Web用户异常行为检测算法F C4.5算法.UNSW-NB 15数据集的实验表明,相比传统的几种数据分析算法,F C4.5算法分类效果最优,在KDD CUP1999数据集上验证了F C4.5算法降低了C4.5算法在构造树的复杂度,在Web用户异常行为检测中具有更高效的性能.
推荐文章
基于支持向量机的Web用户行为异常检测方法
异常检测
One-Class支持向量机
支持向量数据描述
Web用户行为模式挖掘研究
数据挖掘
Web挖掘
行为模式Web用户行为模式挖掘
基于行为的Web用户满意模型
用户满意
用户行为
Web访问日志
基于K-means和naive Bayes的数据库用户行为异常检测研究
数据库
用户行为
异常检测
K-means聚类
naiveBayes分类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Web用户异常行为检测的优化研究
来源期刊 辽宁大学学报(自然科学版) 学科
关键词 异常行为检测 Relief-F算法 决策树模型 混淆矩阵
年,卷(期) 2021,(1) 所属期刊栏目 信息科学与技术
研究方向 页码范围 74-81
页数 8页 分类号 TP311
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (122)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(7)
  • 参考文献(2)
  • 二级参考文献(5)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
异常行为检测
Relief-F算法
决策树模型
混淆矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁大学学报(自然科学版)
季刊
1000-5846
21-1143/N
大16开
沈阳市皇姑区崇山中路66号
8-147
1974
chi
出版文献量(篇)
1909
总下载数(次)
2
论文1v1指导