为了平衡优化算法在高维多目标优化问题中收敛性和多样性之间的关系,增加算法的选择压力,本文提出了一种基于目标空间映射策略的高维多目标粒子群优化算法(many-objective particle swarm optimization al-gorithm based on objective space mapping strategy,MOPSO-OSM).在求解高维多目标优化问题时,Pareto准则难以从众多的非支配解中确定最优"折中"解,因此将高维多目标空间映射为以收敛性和多样性评价指标的2维空间,再将上述2维空间根据性能指标的优劣划分为4个不同区域.同时,使用反向学习策略提高算法跳出局部最优的能力.实验表明,MOPSO-OSM算法可以有效平衡收敛性和多样性之间的关系,达到求解复杂多目标优化问题的目的.