基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
构建了基于一维卷积神经网络的仓储烟叶霉变预测模型,以烟叶样本霉变过程中产生的特征气体浓度为学习数据,对仓储烟叶霉变进行预测;实验结果表明:与传统的BP神经网络模型相比,所构建的模型预测效果更好.
推荐文章
一种基于卷积神经网络的结构损伤检测方法
卷积神经网络
损伤识别
加速度
抗噪性
一种移动卷积神经网络的FPGA实现
FPGA
卷积神经网络
硬件加速
MobileNet
移动端
基于一维卷积神经网络的车载语音识别研究
卷积神经网络
语音识别
网络维度
卷积核
泛化性
一种脉冲卷积神经网络VLSI硬件架构设计
脉冲卷积神经网络电路
手写体识别
数字集成电路
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于一维卷积神经网络的烟叶霉变预测方法
来源期刊 云南师范大学学报(自然科学版) 学科
关键词 卷积神经网络 烟叶霉变 电子鼻 传感器
年,卷(期) 2021,(3) 所属期刊栏目 计算机科学及应用
研究方向 页码范围 23-27
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.7699/j.ynnu.ns-2021-030
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (88)
共引文献  (17)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(7)
  • 参考文献(4)
  • 二级参考文献(3)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
烟叶霉变
电子鼻
传感器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
云南师范大学学报(自然科学版)
双月刊
1007-9793
53-1046/N
大16开
云南昆明市一二一大街298号
64-74
1958
chi
出版文献量(篇)
2229
总下载数(次)
5
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导