基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文本分类是机器学习重要任务之一,如何对文本信息进行有效分类组织,对用户查找并获取有用信息具有重要作用.针对新闻文本分析,提出了一种基于集合运算特征提取及Stacking策略的新闻多分类方法,该方法基于集合运算的方法来提取文本特征,采用Stacking策略,使用SVM以及贝叶斯方法来对文本进行分类.与典型同类方法对比,在复旦大学文本分类数据集上的实验结果表明,该方法随着样本数增加,各分类指标逐渐升高并趋于稳定.
推荐文章
基于纹理特征提取的图像分类方法研究及系统实现
纹理特征提取
图像分类
灰度共生矩阵
支持向量机
一种基于PCA的组合特征提取文本分类方法
基于PCA的组合特征提取算法(PCA-CFEA)
主成分分析
特征提取
文本分类
二维谱的多分形特征提取及其应用
故障诊断
二维谱
特征提取
多分形
小波领袖
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于集合运算特征提取及Stacking策略的新闻多分类方法
来源期刊 井冈山大学学报(自然科学版) 学科
关键词 文本分类 新闻 集合运算 Stacking策略
年,卷(期) 2021,(2) 所属期刊栏目 信息科学|INFORMATION SCIENCE
研究方向 页码范围 70-75
页数 6页 分类号 YP391
字数 语种 中文
DOI 10.3969/j.issn.1674-8085.2021.02.012
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (105)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(4)
  • 参考文献(0)
  • 二级参考文献(4)
2018(6)
  • 参考文献(0)
  • 二级参考文献(6)
2019(4)
  • 参考文献(1)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
新闻
集合运算
Stacking策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
井冈山大学学报(自然科学版)
双月刊
1674-8085
36-1309/N
大16开
江西省吉安市青原区
2010
chi
出版文献量(篇)
2946
总下载数(次)
3
总被引数(次)
7565
论文1v1指导