基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于知识图谱的问答方法旨在通过知识图谱的三元组检索和推断来对自然语言形式的问题进行解答.然而,现有中文知识图谱问答语料库存在规模较小,质量较差等问题,相关语料库构建方法亟待完善.因此,本文提出一种融合预训练模型的中文知识图谱问题生成方法,目标是以中文知识图谱三元组作为输入生成正确且多样的问题.该方法汲取了条件变分自编码器的思想,以预编码器-源编码器-解码器为核心架构,利用BERT模型进行预编码,并以Transformer模型为基础构建源编码器和解码器.此外,该方法还结合了答案编码技术并进行了改进.本文使用NLPCC2017 KBQA数据集进行实验,实验表明该模型在BLEU、ROUGE以及人工评价指标上较基线模型有明显提升,并且能够生成更具多样性的问题,证明了该方法的有效性.
推荐文章
基于知识图谱用户偏好传播的实体推荐模型
知识图谱
偏好传播
top N推荐
特征提取
中文影视知识图谱构建研究
知识图谱
中文影视本体
知识融合
无人系统故障知识图谱的构建方法及应用
知识图谱
无人系统
维修保障
自然语言处理
基于组合关系路径的知识图谱补全方法研究
知识图谱
关系路径
向量表示
补全算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合预训练模型的中文知识图谱问题生成方法
来源期刊 小型微型计算机系统 学科
关键词 知识图谱 问题生成 预训练模型 条件变分自编码器
年,卷(期) 2021,(2) 所属期刊栏目 人工智能与算法研究|Artificial Intelligence and Algorithm Research
研究方向 页码范围 246-250
页数 5页 分类号 TP183
字数 语种 中文
DOI 10.3969/j.issn.1000-1220.2021.02.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (131)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1954(1)
  • 参考文献(0)
  • 二级参考文献(1)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
知识图谱
问题生成
预训练模型
条件变分自编码器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导