基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对强背景噪声下滚动轴承故障诊断问题,结合互补集合经验模态分解(CEEMD)与鲸鱼优化算法优化最小二乘支持向量机(WOA_LSSVM)进行滚动轴承的故障诊断研究.首先对声信号进行快速谱峭度分析并进行带通滤波预处理,提取故障冲击成分;其次,利用CEEMD算法将滤波信号进行分解运算,得到一系列模态分量(IMF);再利用相关系数法选取有效IMF分量进行信号重构;再提取重构信号的近似熵、峭度、峰峰值、峰值因子、波形因子作为特征值组成特征向量;最后,将归一化的特征向量输入WOA_LSSVM进行故障类别识别.将该方法用于滚动轴承试验数据,并进行对比试验分析,验证了该方法的有效性,提高了故障诊断的准确率.
推荐文章
基于DE-LSSVM的滚动轴承故障诊断
集合经验模式分解
能量熵
差分进化算法
最小二乘支持向量机
故障诊断
基于HA&W的滚动轴承声信号故障诊断法
声信号
故障频率
HA&W
小波(包)分析
经验模态分解结合包络谱LSSVM的滚动轴承故障诊断
滚动轴承
故障诊断
经验模态分解
包络谱分析
最小二乘支持向量机
基于小波包熵和ISODATA的滚动轴承故障诊断
故障诊断
滚动轴承
小波包熵
WPE-ISODATA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CEEMD和WOA_LSSVM滚动轴承声信号故障诊断
来源期刊 组合机床与自动化加工技术 学科 工学
关键词 滚动轴承 故障诊断 支持向量机 CEEMD 鲸鱼优化算法
年,卷(期) 2021,(2) 所属期刊栏目 设计与研究
研究方向 页码范围 52-56,61
页数 6页 分类号 TH133|TG506
字数 语种 中文
DOI 10.13462/j.cnki.mmtamt.2021.02.013
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (22)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(11)
  • 参考文献(2)
  • 二级参考文献(9)
2018(13)
  • 参考文献(4)
  • 二级参考文献(9)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
支持向量机
CEEMD
鲸鱼优化算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
组合机床与自动化加工技术
月刊
1001-2265
21-1132/TG
大16开
大连市沙河口区新生路80号504室
8-62
1959
chi
出版文献量(篇)
9363
总下载数(次)
11
总被引数(次)
54585
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导