基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对脑-机接口(BCI)研究中采用单一特征对运动想象脑电信号(EEG)识别率不高的问题,该文提出一种结合脑功能网络和样本熵的特征提取方法.根据事件相关同步/去同步(ERS/ERD)现象以及皮层与肢体运动想象间的对侧映射机制,选取小波包变换消噪重构后的μ节律脑电信号,用左侧27个通道、右侧27个通道分别对左半球脑区和右半球脑区构建脑功能网络,计算网络的平均节点度和平均聚集系数作为运动想象的脑功能网络特征,并结合C3,C4通道μ节律的样本熵构筑分布性和指向性相结合的特征向量.选用支持向量机(SVM)对左右手运动想象脑电信号进行分类,结果表明基于脑功能网络和样本熵的特征提取方法能够实现更优的分类效果,分类准确率最高可达90.27%.
推荐文章
基于样本熵的精神任务脑电信号分类研究
精神任务
特征提取
样本熵
脑机接口
多类运动想象脑电信号特征提取与分类
脑电信号
小波包方差
小波包熵
共同空间模式
特征提取
支持向量机
基于改进小波包与样本熵的表面肌电信号特征提取
肌电信号
小波
小波包
样本熵
特征提取
脑电信号的小波变换和样本熵特征提取方法
脑电信号
样本熵
小波变换
支持向量机
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于脑功能网络和样本熵的脑电信号特征提取
来源期刊 电子与信息学报 学科 工学
关键词 脑电信号 脑功能网络 样本熵 特征提取 事件相关同步/去同步
年,卷(期) 2021,(2) 所属期刊栏目 论文
研究方向 页码范围 412-418
页数 7页 分类号 TN911.7|TP391
字数 语种 中文
DOI 10.11999/JEIT191015
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (60)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(8)
  • 参考文献(0)
  • 二级参考文献(8)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(8)
  • 参考文献(1)
  • 二级参考文献(7)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(10)
  • 参考文献(1)
  • 二级参考文献(9)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(2)
  • 参考文献(0)
  • 二级参考文献(2)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑电信号
脑功能网络
样本熵
特征提取
事件相关同步/去同步
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导