基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现隧道围岩的实时识别,基于马尔可夫过程和深度神经网络模型,提出将先验围岩信息和掘进参数结合,作为深度神经网络输入的隧道掘进机(TBM)围岩实时识别方法.?根据施工现场地质勘探资料,用马尔可夫过程的隧道围岩分类方法预测隧道沿线的围岩分布概率;将该围岩分布概率作为先验围岩信息,结合TBM掘进参数作为神经网络输入,真实围岩类别作为输出,训练深度神经网络以实现对TBM前方围岩的实时识别.?使用工程现场数据进行对比实验,结果表明,所设计的深度神经网络模型的围岩总体识别率高于96%.?相比于仅将掘进参数作为输入,当结合先验围岩信息和掘进参数作为输入时,模型围岩识别率提高6%以上.
推荐文章
基于马尔科夫模型和卷积神经网络的异常数据检测方法
异常检测
马尔科夫模型
卷积神经网络
多维数据
基于约束马尔可夫决策过程的网络生存性研究
生存性定义
生存性框架
一致性原则
生存性设计
基于隐性马尔可夫模型的手势识别设计和优化
手势识别
隐性马尔可夫模型
重采样
方向编码
隧道围岩破坏模式的进化神经网络识别
围岩
破坏模式
识别
神经网络
进化神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于马尔可夫过程和深度神经网络的TBM围岩识别
来源期刊 浙江大学学报(工学版) 学科
关键词 隧道掘进机(TBM) 马尔可夫过程 深度神经网络 围岩识别 预测
年,卷(期) 2021,(3) 所属期刊栏目 机械工程|Mechanical Engineering
研究方向 页码范围 448-454,547
页数 8页 分类号 TN137
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2021.03.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (60)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(6)
  • 参考文献(2)
  • 二级参考文献(4)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隧道掘进机(TBM)
马尔可夫过程
深度神经网络
围岩识别
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导