基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
隐式篇章关系识别是篇章关系识别的子任务,其挑战性在于难以学习到具有丰富语义信息和交互信息的论元表示.针对这一难点,该文提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)的隐式篇章关系分类方法.该方法采用预训练语言模型BERT(Bidirectional Encoder Representation from Transformers)编码论元以获取论元表示,再分别拼接论元表示和注意力分数矩阵作为特征矩阵和邻接矩阵,构造基于图卷积神经网络的分类模型,从而根据论元自身信息以及交互信息对论元表示进行调整,以得到有助于隐式篇章关系识别的论元表示.该文利用宾州篇章树库(Penn Discourse Treebank,PDTB)语料进行实验,实验结果表明,该方法在四大类关系上分类性能优于基准模型BERT,且其在偶然(Contingency)关系和扩展(Expansion)关系上优于目前先进模型,F1值分别达到60.70% 和74.49%.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于图卷积神经网络的隐式篇章关系识别
来源期刊 中文信息学报 学科
关键词 隐式篇章关系识别 图卷积神经网络 自注意力机制 交互式注意力机制
年,卷(期) 2021,(8) 所属期刊栏目 语言分析与计算|Language Analysis and Calculation
研究方向 页码范围 28-37
页数 10页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1003-0077.2021.08.004
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐式篇章关系识别
图卷积神经网络
自注意力机制
交互式注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导