基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 肺结节是肺癌的早期存在形式.低剂量CT(computed tomogragphy)扫描作为肺癌筛查的重要检查手段,已经大规模应用于健康体检,但巨大的CT数据带来了大量工作,随着人工智能技术的快速发展,基于深度学习的计算机辅助肺结节检测引起了关注.由于肺结节尺寸差别较大,在多个尺度上表示特征对结节检测任务至关重要.针对结节尺寸差别较大导致的结节检测困难问题,提出一种基于深度卷积神经网络的胸部CT序列图像3D多尺度肺结节检测方法.方法 包括两阶段:1)尽可能提高敏感度的结节初检网络;2)尽可能减少假阳性结节数量的假阳性降低网络.在结节初检网络中,以组合了压缩激励单元的Res2Net网络为骨干结构,使同一层卷积具有多种感受野,提取肺结节的多尺度特征信息,并使用引入了上下文增强模块和空间注意力模块的区域推荐网络结构,确定候选区域;在由Res2Net网络模块和压缩激励单元组成的假阳性降低网络中对候选结节进一步分类,以降低假阳性,获得最终结果.结果 在公共数据集LUNA16(lung nodule analysis 16)上进行实验,实验结果表明,对于结节初检网络阶段,当平均每例假阳性个数为22时,敏感度可达到0.983,相比基准ResNet+FPN(feature pyramid network)方法,平均敏感度和最高敏感度分别提高了 2.6%和0.8%;对于整个3D多尺度肺结节检测网络,当平均每例假阳性个数为1时,敏感度为0.924.结论 与现有主流方案相比,该检测方法不但提高了肺结节检测的敏感度,还有效地控制了假阳性,取得了更优的性能.
推荐文章
多尺度卷积递归神经网络的RGB-D物体识别
多尺度
3D曲面法线
递归神经网络
RGB-D物体识别
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
基于3D卷积神经网络的脑肿瘤医学图像分割优化
脑肿瘤
医学图像分割
多模态MRI
差异信息提取
多尺度采样
3D卷积神经网络
基于多尺度池化卷积神经网络的疲劳检测方法研究
视觉特征分析
多尺度池化
卷积神经网络
疲劳检测
人脸检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 3D多尺度深度卷积神经网络肺结节检测
来源期刊 中国图象图形学报 学科
关键词 肺结节检测 卷积神经网络(CNN) 多尺度 区域推荐网络 上下文增强 空间注意力 假阳性降低
年,卷(期) 2021,(7) 所属期刊栏目 医学图像处理|Medical Image Processing
研究方向 页码范围 1716-1725
页数 10页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(6)
  • 参考文献(6)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
肺结节检测
卷积神经网络(CNN)
多尺度
区域推荐网络
上下文增强
空间注意力
假阳性降低
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
总被引数(次)
131816
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导