基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有变电站视频监控系统人工巡视模式效率低下的问题,本文基于AI边缘计算技术建立变电站视频深度学习识别模型,构建了适用于变电站现场的电力专用视频智能识别计算单元,采用卷积神经网络算法实现了"烟火""安全帽""异物""画面质量"四大电力定制场景的融合识别,形成"现场视频分析装置+主站云分析平台"的"云-边"协同视频智能分析系统.在云端构服务器实现对现场上传识别结果的二次深度分析,并通过主站样本库积累及反向传输机制使装置具备持续学习的能力.试运行阶段的实际数据表明,四大场景平均识别准确达到90%以上,系统实现了变电站视频画面内容的自动识别,极大提高变电站视频监控的质量和效率,具有很强的实用价值和推广价值.
推荐文章
基于深度学习的视频异常行为识别算法
视频异常行为
异常行为识别
深度学习
行为分类
网络训练
仿真测试
深度学习下智慧社区视频监控异常识别方法
深度学习
智慧社区
视频监控
异常识别
行为轨迹
精准度
基于地震对应概率谱分析的前兆异常识别研究
地震对应概率谱
滑动平均概率
前兆异常
定量化识别
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AI边缘深度算法视频分析装置的电力场景异常识别技术研究
来源期刊 电力大数据 学科 工学
关键词 视频监控 边缘计算 卷积神经网络 电力场景 智能识别
年,卷(期) 2021,(11) 所属期刊栏目 大数据专题|Big Data Special Reports
研究方向 页码范围 1-8
页数 8页 分类号 TM63
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视频监控
边缘计算
卷积神经网络
电力场景
智能识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力大数据
月刊
2096-4633
52-1170/TK
16开
贵州省贵阳市解放路251号
1977
chi
出版文献量(篇)
4266
总下载数(次)
8
总被引数(次)
4915
论文1v1指导