摘要:
目的 卷积神经网络(convolutional neural network,CNN)在计算机辅助诊断(computer-aided diagnosis,CAD)肺部疾病方面具有广泛的应用,其主要工作在于肺部实质的分割、肺结节检测以及病变分析,而肺实质的精确分割是肺结节检出和肺部疾病诊断的关键.因此,为了更好地适应计算机辅助诊断系统要求,提出一种融合注意力机制和密集空洞卷积的具有编码—解码模式的卷积神经网络,进行肺部分割.方法 将注意力机制引入网络的解码部分,通过增大关键信息权重以突出目标区域抑制背景像素干扰.为了获取更广更深的语义信息,将密集空洞卷积模块部署在网络中间,该模块集合了Inception、残差结构以及多尺度空洞卷积的优点,在不引起梯度爆炸和梯度消失的情况下,获得了更深层次的特征信息.针对分割网络常见的特征丢失等问题,对网络中的上/下采样模块进行改进,利用多个不同尺度的卷积核级联加宽网络,有效避免了特征丢失.结果 在LUNA(lung nodule analysis)数据集上与现有5种主流分割网络进行比较实验和消融实验,结果表明,本文模型得到的预测图更接近于标签图像.Dice相似系数、交并比(intersection over union,IoU)、准确度(accuracy,ACC)以及敏感度(sensitivity,SE)等评价指标均优于对比方法,相比于性能第2的模型,分别提高了0.443%,0.272%,0.512% 以及0.374%.结论 本文提出了一种融合注意力机制与密集空洞卷积的肺部分割网络,相对于其他分割网络取得了更好的分割效果.