基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人群计数研究普遍使用欧几里得损失函数,易造成图像局部相关性缺失,且现有研究方法未能充分提取人群图像中连续变化的尺度特征,影响了人群计数模型的性能.针对上述问题,该文提出一种基于多尺度增强网络的人群计数模型(MSEN).首先,在多分支结构生成网络中引入区域性判别网络,将二者组合形成嵌入式GAN模块,以增强生成图像的局部相关性;之后,基于金字塔池化结构设计了尺度增强模块,将该模块连接在嵌入式GAN模块之后,进一步从不同区域提取不同尺度的局部特征,以最大程度地应对人群图像局部尺度连续变化的问题,从而增强整体模型的泛化能力.最后,在3个具有挑战性的人群计数公共数据集上进行了广泛的实验.实验结果表明,该文所述模型可有效提升人群计数问题的准确性和鲁棒性.
推荐文章
编码-解码多尺度卷积神经网络人群计数方法
人群计数
编码-解码结构
多尺度
空洞空间金字塔池化
计数误差
损失函数
基于尺度自适应卷积神经网络的人群计数算法
人群计数
卷积神经网络
可变形卷积
特征图
密度图
基于多尺度协同的人头检测方法
多尺度
金字塔变换
窗口融合
梯度直方图
基于多尺度分析的人脸识别算法研究
人脸识别
多尺度分析
轮廓特征
角点特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度增强网络的人群计数方法
来源期刊 电子与信息学报 学科
关键词 人群计数 图像局部相关性 多尺度特征 嵌入式GAN模块 尺度增强模块
年,卷(期) 2021,(6) 所属期刊栏目 模式识别与智能信息处理|Pattern Recognition and Intelligent Information Processing
研究方向 页码范围 1764-1771
页数 8页 分类号 TN911.73|TP391.4
字数 语种 中文
DOI 10.11999/JEIT200331
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (4)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人群计数
图像局部相关性
多尺度特征
嵌入式GAN模块
尺度增强模块
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
论文1v1指导