基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高风电功率超短期多步预测精度,针对梯度修正学习算法采用随机初始化网络参数训练自适应小波神经网络(AWNN)易陷入局部最优的缺点,将粒子群(PSO)算法和差分进化(DE)算法相结合,提出利用IPSO-DE算法优化AWNN的初始化网络参数,得到改进AWNN模型(IAWNN)并将其用于风电功率超短期多步预测.仿真结果表明:IPSO-DE算法优化AWNN初始化网络参数的性能优于IPSO算法、DE算法和梯度修正学习算法,所提改进模型的多步预测性能优于AWNN模型、持续法(PM)模型和BP神经网络(BPNN)模型.
推荐文章
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
基于EEMD-IGSA-LSSVM的超短期风电功率预测?
集合经验模态分解
风功率预测
最小二乘向量机
改进引力搜索算法
指数径向基核函数
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进AWNN的风电功率超短期多步预测
来源期刊 太阳能学报 学科
关键词 风电功率 预测 改进模型 自适应小波神经网络
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 166-173
页数 8页 分类号 TM761
字数 语种 中文
DOI 10.19912/j.0254-0096.tynxb.2018-0714
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (127)
共引文献  (772)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(11)
  • 参考文献(1)
  • 二级参考文献(10)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(17)
  • 参考文献(1)
  • 二级参考文献(16)
2011(13)
  • 参考文献(0)
  • 二级参考文献(13)
2012(13)
  • 参考文献(1)
  • 二级参考文献(12)
2013(15)
  • 参考文献(1)
  • 二级参考文献(14)
2014(10)
  • 参考文献(2)
  • 二级参考文献(8)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电功率
预测
改进模型
自适应小波神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
总被引数(次)
77807
论文1v1指导