基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recent advances have demonstrated that a machine learning technique known as "reservoir computing" is a signif-icantly effective method for modelling chaotic systems.Going beyond short-term prediction,we show that long-term behaviors of an observed chaotic system are also preserved in the trained reservoir system by virtue of network measure-ments.Specifically,we find that a broad range of network statistics induced from the trained reservoir system is nearly identical with that of a learned chaotic system of interest.Moreover,we show that network measurements of the trained reservoir system are sensitive to distinct dynamics and can in turn detect the dynamical transitions in complex systems.Our findings further support that rather than dynamical equations,reservoir computing approach in fact provides an alternative way for modelling chaotic systems.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
基于信令寻径式网络的高性能容错VIA设计与实现
VIA
信令寻径式网络
机群计算
并行处理
基于complex moment的圆度测量和图像检索
complex moment
圆度测量
梯度
图像结构相似度
图像检索
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Complex network perspective on modelling chaotic systems via machine learning
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2021,(6) 所属期刊栏目 GENERAL
研究方向 页码范围 238-243
页数 6页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abd9b3
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
总被引数(次)
27962
论文1v1指导