基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对低秩矩阵在图像显著性检测中,因凸松弛迭代奇异值分解导致的计算复杂度高及稀疏矩阵元素间潜在结构关系未充分考虑导致的显著图发散或不完整现象,提出了一种结构化低秩矩阵Krylov-SVD分解的显著性目标检测算法.该算法对Arnoldi模型进行了深入研究,在Krylov-Schur重启算法的基础上对Schur分解进行改进,给出了Krylov-SVD奇异值分解算法,通过求其前k个特征值,对稀疏矩阵进行降阶处理,以降低计算复杂度;随后引入了索引树结构化稀疏范数,利用分层稀疏正则化来连接稀疏矩阵中元素之间的空间关系.实验中采用MSRA10K、SOD和ECSSD三个公开数据集、四种评价指标,与现有的十一种算法进行了对比实验.实验结果表明,该显著性目标检测算法在时间性能和精准性方面有着良好表现.
推荐文章
基于低秩矩阵二元分解的快速显著性目标检测算法
显著性目标检测
低秩矩阵双因子分解
分层稀疏正则化
交替方向法
基于结构感知深度神经网络的显著性对象检测算法
显著性对象检测
深度学习
显著图
卷积神经网络
对象骨架检测
基于颜色和纹理特征的显著性检测算法
模式识别
显著性检测
颜色对比度
纹理特征
二维信息熵
简单背景先验下的显著性目标检测算法
目标检测
背景定位
模型融合
空间优化
背景先验
显著性计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结构化Krylov-SVD分解的显著性目标检测算法
来源期刊 计算机技术与发展 学科
关键词 显著目标检测 结构化低秩矩阵 Arnoldi模型 Krylov-SVD分解 索引树
年,卷(期) 2021,(8) 所属期刊栏目 图形与图像
研究方向 页码范围 45-50,62
页数 7页 分类号 TP302.7
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.08.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (1)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(7)
  • 参考文献(2)
  • 二级参考文献(5)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(10)
  • 参考文献(2)
  • 二级参考文献(8)
2019(6)
  • 参考文献(2)
  • 二级参考文献(4)
2020(5)
  • 参考文献(5)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
显著目标检测
结构化低秩矩阵
Arnoldi模型
Krylov-SVD分解
索引树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导