作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在大数据时代,随着网络上的文本数据日益增长,文本分类技术显得越来越重要,是文本挖掘领域的热点问题,具有广阔的应用场景。文本分类方法的研究开始于20世纪50年代,一直受到人们的广泛关注。该文从文本分类的流程出发,简要介绍文本分类的一般流程以及每一步骤中涉及的主要技术。主要包括预处理部分的分词、去停词和文本表示方法、特征降维和分类算法,分析了各种方法的优缺点并总结。
推荐文章
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
中文文本分类系统的设计与实现
文本分类
向量空间模型
特征项选择
权重
不同情境下中文文本分类模型的表现及选择?
中文文本
文本分类
数据挖掘
情报分析
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 中文文本分类概述
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 文本分类 预处理 特征降维 分类算法
年,卷(期) 2021,(1) 所属期刊栏目
研究方向 页码范围 229-230
页数 2页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
文本分类
预处理
特征降维
分类算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导