基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统股票趋势预测模型中忽略社交媒体文本信息对股价变化的影响和时间序列的平稳性处理、长期依赖等问题,提出一种融合社交媒体文本信息和LSTM的股票趋势预测模型(BiTCN-LSTM).该模型分为情感分析和金融时序预测两部分.情感分析层将社交媒体文本信息输入到双向时间卷积网络进行特征提取和情感分析,得到积极或者消极的情感分类表示;金融时序预测层使用LSTM神经网络,将差分运算后的股票历史数据和文本情感特征向量加权融合作为网络输入,完成金融时序预测任务.通过上海证券综合指数数据集的实验验证,与传统金融时序预测模型相比,该模型的RMSE指标降低3.44-43.62.
推荐文章
基于SWT法网络社交平台图像文本检测
图像文本检测
网络社交平台
笔画宽度变换
文本区域检测
算法流程
仿真验证
基于网络拓扑结构视角的社交媒体用户转发预测算法
转发预测
社交媒体
拓扑结构分析
社交影响力
逻辑回归
面向社交媒体的分级注意力表情符预测模型
表情符预测
标签
分级预测
注意力机制
社交媒体
基于社交媒体的手机摄影传播
社交媒体
手机摄影
传播
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于社交媒体文本信息的金融时序预测
来源期刊 计算机工程与设计 学科
关键词 情感分析 双向时间卷积网络 差分运算 长短时记忆 金融时间序列预测
年,卷(期) 2021,(8) 所属期刊栏目 软件与算法|Software and Arithmetic
研究方向 页码范围 2224-2231
页数 8页 分类号 TP391.1
字数 语种 中文
DOI 10.16208/j.issn1000-7024.2021.08.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (4)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情感分析
双向时间卷积网络
差分运算
长短时记忆
金融时间序列预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
总被引数(次)
161677
论文1v1指导