基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着电动汽车(EV)充电设施规模的不断扩大,EV充电数据可以更方便地获得.某些非人为因素会导致数据集中存在数据缺失和数据异常的问题,阻碍了EV负荷预测精度的提高.因此,文中在生成对抗网络(GAN)中采用用于插补的门控循环单元神经网络(GRUI)细胞来处理不完整负荷数据集中前后观测值间的不规则时滞关系,提出了基于GRUI-GAN的数据插补模型来实现EV负荷数据修复.然后,以带有Mogrifier门控机制的长短期记忆网络进行EV负荷预测.最后,实验结果表明了所提方法可以生成精度较高的新数据对缺失值进行插补,并且经所提方法修复之后的数据有效提高了EV负荷预测精度.
推荐文章
天气因素在短期电力负荷预测中的应用
BP人工神经网络
短期电力负荷预测
电力系统
天气因素
基于柔性负荷的负荷特性分析和短期负荷预测新技术
柔性负荷
负荷特性分析
短期负荷预测
智能电网
基于事例推理的短期负荷预测
短期负荷预测
事例推理
事例表示
相似度
城市燃气负荷的短期预测
城市燃气
负荷
短期预测
有效温度
模型
预测步长
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GAN的负荷数据修复及其在EV短期负荷预测中的应用
来源期刊 电力系统自动化 学科
关键词 电动汽车(EV) 短期负荷预测 数据插补 生成对抗网络(GAN) 门控循环单元神经网络 长短期记忆网络(LSTM网络)
年,卷(期) 2021,(16) 所属期刊栏目 学术研究|Basic Research
研究方向 页码范围 143-151
页数 9页 分类号
字数 语种 中文
DOI 10.7500/AEPS20210201007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (77)
共引文献  (11)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(15)
  • 参考文献(1)
  • 二级参考文献(14)
2019(28)
  • 参考文献(6)
  • 二级参考文献(22)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电动汽车(EV)
短期负荷预测
数据插补
生成对抗网络(GAN)
门控循环单元神经网络
长短期记忆网络(LSTM网络)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统自动化
半月刊
1000-1026
32-1180/TP
大16开
江苏省南京市江宁区诚信大道19号
28-40
1977
chi
出版文献量(篇)
12334
总下载数(次)
31
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导