基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的基于数据驱动的轴承剩余预测方法仍需要一定的先验知识,比如:特征指标选取、健康指标构建、失效阈值选定等等.预测结果严重依赖人工经验,为了克服这一缺点,基于深度学习方法提出了一种用于轴承剩余寿命预测的新方法,该方法的核心包括健康指标构建和剩余寿命计算.首先提出了一种无需先验知识的基于空间卷积长短时记忆神经网络(Convolutional long short-term memory neural network,ConvLSTM)的健康指标生成网络模型,该网络利用卷积神经网络的局部特征提取能力和长短时记忆网络的时间依赖特性,可直接从采集到的原始信号中挖掘反映退化程度的特征,构建健康指标,实现了高维原始数据向低维特征的映射转化,并利用Sigmoid函数将其归至[0,1]区间内,实现了阈值的统一;然后,利用粒子滤波更新双指数寿命模型,实现剩余寿命结果的输出.利用轴承全寿命试验对所提方法进行了验证,并与其他相关方法进行对比,结果表明本文方法所构建的健康指标具有更好的趋势性、单调性和鲁棒性,同时剩余寿命预测的准确率更高.
推荐文章
基于卷积神经网络与双向长短时记忆网络组合模型的短时交通流预测
智能交通
短时交通流预测
深度学习
CNN
BiLSTM
基于双向长短时记忆单元和卷积神经网络的多语种文本分类方法
多语种文本分类
长短时记忆单元
卷积神经网络
基于长短时记忆神经网络的风电机组滚动轴承故障诊断方法
风电机组
滚动轴承
故障诊断
回归神经网络
长短时记忆神经网络
小波包变换
基于长短时记忆神经网络的带钢酸洗浓度预测
浓度预测
带钢酸洗
深度学习
长短期记忆
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于空间卷积长短时记忆神经网络的轴承剩余寿命预测方法
来源期刊 机械工程学报 学科 工学
关键词 滚动轴承 剩余寿命预测 健康指标 深度学习 ConvLSTM
年,卷(期) 2021,(21) 所属期刊栏目 机械动力学
研究方向 页码范围 88-95
页数 8页 分类号 TH17
字数 语种 中文
DOI 10.3901/JME.2021.21.088
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
剩余寿命预测
健康指标
深度学习
ConvLSTM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程学报
半月刊
0577-6686
11-2187/TH
大16开
北京百万庄大街22号
2-362
1953
chi
出版文献量(篇)
12176
总下载数(次)
57
总被引数(次)
241354
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导