基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于机器学习故障诊断方法,针对船用滚动轴承复合故障特征提取多样化的特点,提出一种以振动信号时域指标为特征的随机森林故障诊断方法.将振动时域信号进行清洗转换,构造5个量纲一化指标的衍生特征,并选取以决策树为基本分类器的随机森林算法建立训练模型;通过特征筛选、评估测试和模型优化得到较为理想的故障诊断分类模型;采用滚动轴承竞赛数据集进行模型仿真,并结合实际模拟8种船用滚动轴承故障状态.通过三向振动实验和算法建模,证明特征提取的科学性和故障诊断模型的有效性.结果表明:采用该方法,数据仿真诊断准确率为98.61%,实验诊断准确率为98.85%,且该方法在振动采集方向为轴向时诊断效果最优.
推荐文章
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
基于混合域特征集与加权KNN的滚动轴承故障诊断
混合域特征集
加权K-近邻分类器
滚动轴承
故障诊断
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于振动时域特征的船用滚动轴承故障诊断方法
来源期刊 机床与液压 学科
关键词 滚动轴承 故障诊断 随机森林 机器学习 特征提取
年,卷(期) 2021,(14) 所属期刊栏目 故障诊断与可靠性|FAULT DIAGNOSIS & RELIABILITY
研究方向 页码范围 193-200
页数 8页 分类号 TH133.33
字数 语种 中文
DOI 10.3969/j.issn.1001-3881.2021.14.039
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (113)
共引文献  (13)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(12)
  • 参考文献(0)
  • 二级参考文献(12)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(16)
  • 参考文献(2)
  • 二级参考文献(14)
2018(22)
  • 参考文献(0)
  • 二级参考文献(22)
2019(13)
  • 参考文献(9)
  • 二级参考文献(4)
2020(6)
  • 参考文献(6)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
故障诊断
随机森林
机器学习
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
总被引数(次)
104386
论文1v1指导