基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
自从卷积神经网络应用到图像超分辨率领域以来,越来越多的神经网络被提出,并且取得良好的效果,但是当前大多数方法都严重依赖于模型的深度和宽度,而没有充分利用底层信息.针对以上问题,提出了一种新型特征浓缩网络,该网络通过多个特征浓缩块逐步提取有效特征信息.网络包括特征提取模块、特征浓缩模块和重建模块,并添加了双三次插值运算和全局残差学习.通过底层特征处理来提取有用的特征,使用特征浓缩块进一步提取特征,由重建模块恢复高分辨率图像.在实验中,选择4个不同的公开数据集进行不同尺度的测试,通过实验结果可以看出,所提出的网络对比其他方法有更好的客观指标结果.
推荐文章
基于ResNeXt和WGAN网络的单图像超分辨率重建
单图像超分辨率重建
ResNeXt
WGAN
深度学习
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于CNN的轻量级神经网络单幅图像超分辨率研究
卷积神经网络
轻量级神经网络
单幅图像超分辨率
图像增强
基于马尔可夫网络人脸图像超分辨率非线性算法
人脸图像
超分辨率
马尔可夫网络
非线性搜索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 图像超分辨率特征浓缩网络
来源期刊 计算机工程与应用 学科
关键词 卷积神经网络 超分辨率 特征提取 全局残差学习
年,卷(期) 2021,(16) 所属期刊栏目 图形图像处理|Graphics and Image Processing
研究方向 页码范围 213-219
页数 7页 分类号 TP399
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2005-0203
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (3)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(6)
  • 参考文献(0)
  • 二级参考文献(6)
2019(1)
  • 参考文献(0)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
超分辨率
特征提取
全局残差学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导