基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决起重机高空金属结构不可达部位裂纹的远程可视化检测难题,提出一种基于无人机视觉的结构表面裂纹检测与识别方法.通过搭载高分辨率可见光相机的倒置式无人机检测平台,全方位采集大型起重机复杂钢结构表面图像;采用Faster R-CNN深度神经网络算法分类检测是否有裂纹缺陷,并以缺陷最小外接矩形框标记其位置;对检测出的裂纹目标框区域,利用最大熵阈值分割、Canny边缘检测、投影特征提取和骨架提取等方法,对裂纹长度、宽度、面积、长宽比等参数进行识别,并为长宽比和面积设置一定阈值,去除漆膜开裂和水渍等伪裂纹缺陷.实验结果表明,Faster R-CNN裂纹检测算法准确率达到95.4%,速度达到2 f/s,同时裂纹宽度识别误差约为5.84%,实现了起重机结构表面疲劳裂纹的远程自动化检测.
推荐文章
基于支持向量机的无人机视觉障碍检测
低高度飞行
支持向量机
图像分割
障碍检测
基于智能视觉的无人机导航技术研究
智能视觉
无人机
着陆导航
图像预处理
特征提取
姿态角
基于双目视觉的无人机避障之研究
无人机
自主快速避障
双目视觉
深度信息
基于单目视觉的无人机测距算法研究
无人机
单目视觉
实时距离
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于无人机视觉的起重机表面裂纹检测方法
来源期刊 测控技术 学科 工学
关键词 无人机视觉 表面裂纹 深度神经网络 图像识别
年,卷(期) 2022,(4) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 28-34,75
页数 8页 分类号 TP391.41
字数 语种 中文
DOI 10.19708/j.ckjs.2021.10.266
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无人机视觉
表面裂纹
深度神经网络
图像识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导