基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对锂离子电池退化过程中不可避免的容量再生现象建立了电池退化模型,提出了融合粒子滤波(PF)和高斯过程回归(GPR)的电池剩余使用寿命(RUL)预测算法.仿真实验结果表明,所提出的算法能够实现准确的锂离子电池RUL预测.
推荐文章
基于IGA-MRVR的锂离子电池剩余使用寿命预测
电动汽车
锂电池
剩余使用寿命
多核相关向量回归算法
改进遗传算法优化
预测
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测
锂离子电池
剩余使用寿命预测
融合神经网络
一维卷积神经网络
双向长短期记忆
锂离子电池状态估计与剩余寿命预测方法综述
锂离子电池
荷电状态(SOC)估算
健康度(SOH)估算
剩余寿命(RUL)预测
基于数据驱动的卫星锂离子电池寿命预测方法
锂离子电池
寿命预测
数据驱动
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PF-GPR算法的锂离子电池剩余使用寿命预测
来源期刊 武汉科技大学学报(自然科学版) 学科 工学
关键词 锂离子电池 电池容量 容量再生 剩余使用寿命 粒子滤波 高斯过程回归
年,卷(期) 2022,(3) 所属期刊栏目
研究方向 页码范围 189-196
页数 8页 分类号 TM912
字数 语种 中文
DOI 10.3969/j.issn.1674-3644.2022.03.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂离子电池
电池容量
容量再生
剩余使用寿命
粒子滤波
高斯过程回归
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉科技大学学报(自然科学版)
双月刊
1674-3644
42-1608/N
湖北武汉青山区
chi
出版文献量(篇)
2627
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导