基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The ratings in many user-object online rating systems can reflect whether users like or dislike the objects,and in some online rating systems,users can directly choose whether to like an object.So these systems can be represented by signed bipartite networks,but the original unsigned node evaluation algorithm cannot be directly used on the signed networks.This paper proposes the Signed PageRank algorithm for signed bipartite networks to evaluate the object and user nodes at the same time.Based on the global information,the nodes can be sorted by the Signed PageRank values in descending order,and the result is SR Ranking.The authors analyze the characteristics of top and bottom nodes of the real networks and find out that for objects,the SR Ranking can provide a more reasonable ranking which combines the degree and rating of node,and the algorithm also can help us to identify users with specific rating patterns.By discussing the location of negative edges and the sensitivity of object SR Ranking to negative edges,the authors also explore that the negative edges play an important role in the algorithm and explain that why the bad reviews are more important in real networks.
推荐文章
PageRank算法研究
信息检索
PageRank算法
时效性
主题漂移
潜在语义模型(LSM)
PageRank算法中主题漂移的研究
pagerank
主题漂移
主题敏感
页面排序
搜索引擎
The morphological characteristics of gully systems and watersheds in Dry-Hot Valley, SW China
Morphological characteristics
Quantitative relationships
Gully system
Watershed
Dry-Hot Valley
基于MapReduce的PageRank算法的研究
云计算
MapReduce模型
PageRank算法
Hadoop
并行计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Signed PageRank on Online Rating Systems
来源期刊 系统科学与复杂性学报(英文版) 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目
研究方向 页码范围 58-80
页数 23页 分类号
字数 语种 英文
DOI 10.1007/s11424-021-0124-2
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
系统科学与复杂性学报(英文版)
双月刊
1009-6124
11-4543/O1
16开
北京中关村南四街甲1号中科院系统所
1988
eng
出版文献量(篇)
1720
总下载数(次)
0
总被引数(次)
4942
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导