摘要:
氧化铜是一种有潜力的光电催化分解水用光阴极材料,但由于其在光电催化分解水过程中会发生严重的光腐蚀,限制了其实际应用.因此,构建有效的保护壳层抑制氧化铜光腐蚀,具有重要意义.虽然原子层沉积技术已成为构建光阴极保护层的主流手段,但由于制造成本高昂,难以满足未来实际应用对低成本和规模化的要求,因此,亟需发展简易、低廉的保护壳层制备手段.从电化学稳定性的角度出发,发现氮化铜(Cu3N)是一种电化学稳定的铜基氮化物,已被广泛应用于电催化还原CO2、N2和O2等领域,具有强的抗电化学还原能力(J.Am.Chem.Soc.,2011,133,15236-15239;Nano Lett.,2019,19,8658-8663).因此,氮化铜具有作为氧化铜光阴极保护壳层的潜质.目前,氮化铜薄膜主要通过高真空的手段制备,如射频磁控溅射以及等离子体辅助分子束外延等方式.为了实现低成本、易制备的目标,本文发展了一种低温(185°c)氮化的方法,在氧化铜光阴极表面原位制备出氮化铜保护壳层,使氧化铜光阴极获得了稳定的光电催化分解水性能.在20 min的光电催化分解水的稳定性测试中,未保护的氧化铜光阴极的光电流密度衰减至初始光电流密度的10%,而氮化铜壳层保护的氧化铜光阴极的光电流密度则仍可保持其初始光电流密度的80%.通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)等表征方法,研究了氮化铜保护壳层对氧化铜光阴极的保护机理,即致密的抗还原物质氮化铜作为保护层,有效隔绝了电解质溶液与氧化铜的直接接触,从而抑制了氧化铜的光腐蚀.XRD和XPS结果证实表面氮化铜壳层的生成;SEM结果表明,存在致密的氮化铜薄膜壳层.光电化学稳定性测试后,样品的XRD结果表明,无氮化铜保护的氧化铜光阴极已经完全被还原为氧化亚铜,而氮化铜保护的氧化铜光阴极只有少部分被还原为氧化亚铜,证明氧化铜的光腐蚀得到了有效的抑制.稳定性测试结果表明,氮化铜保护的氧化铜光阴极表面的N 1s信号基本保持不变,证实了氮化铜保护壳层具有高电化学稳定性和抗电化学还原能力.虽然,氮化铜保护壳层在一定程度上限制了氧化铜光阴极的光电催化分解水活性,但后续可尝试在氮化铜表面负载产氢助催化剂,以实现光电流密度和稳定性的同步提升.本工作展示了氮化铜用作不稳定光阴极表面(尤其是铜基光阴极)保护壳层的潜力.