基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于多传感器信息融合的3维目标检测,提出了一种实时高精度的双阶段深度神经网络PointRG-BNet.第1阶段,在区域提案网络中,首先将3维点云投影到2维图像上生成6维RGB点云,然后对输入的6维RGB点云进行特征提取,得到低维特征图与高维特征图,利用融合后的特征图生成大量置信度较高的提案;第2阶段,在目标检测网络中,利用第1阶段生成的提案进行RoI池化,得到特征图上与每个提案对应的特征集合,通过针对性地学习提案的特征集合,实现了更精准的3维目标检测.在KITTI数据集上的公开测试结果表明,PointRGBNet在检测精度上不仅优于仅使用2维图像或3维点云的目标检测网络,甚至优于某些先进的多传感器信息融合网络,而且整个网络的目标检测速度为12帧/s,满足实时性要求.
推荐文章
基于粒子滤波和检测信息的多传感器融合跟踪
粒子滤波器
多传感器
信息融合
检测和跟踪
目标跟踪
多传感器目标检测的模糊信息融合技术研究
不确定性
模糊集合
多传感器信息融合
TDC算子
基于多传感器融合的运动目标跟踪算法
传感器融合
运动目标跟踪
信息采集
运动目标背景建模
基于OWA算子的多传感器属性信息融合
OWA算子
信息融合
目标识别
属性信息
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多传感器信息融合的3维目标实时检测
来源期刊 汽车工程 学科
关键词 目标检测 2维图像 3维点云 深度神经网络
年,卷(期) 2022,(3) 所属期刊栏目
研究方向 页码范围 340-349,339
页数 11页 分类号
字数 语种 中文
DOI 10.19562/j.chinasae.qcgc.2022.03.005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
2维图像
3维点云
深度神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
汽车工程
月刊
1000-680X
11-2221/U
大16开
北京市西城区莲花池东路102号天连大厦1003室
2-341
1979
chi
出版文献量(篇)
4728
总下载数(次)
23
总被引数(次)
66645
论文1v1指导