基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承发生故障时非线性信号特征难以提取导致诊断效率较低的难题,提出一种基于参数优化改进的多尺度排列熵(Multi-scale permutation entropy,MPE)与核极限学习机(Kernel extreme learning machine,KELM)相结合的故障诊断方法.首先,使用关联积分法(C-C算法)对MPE的嵌入维数和时间延迟进行优化;其次,计算滚动轴承振动信号在选定的经验参数与优化参数下各尺度的排列熵值并以此构建特征向量;最后,利用KELM对滚动轴承进行故障分类.结果表明,参数优化后的MPE结合KELM的故障诊断方法能够有效地提取出故障特征进而很好地实现故障诊断.
推荐文章
KTA-KELM在滚动轴承故障诊断中的应用
滚动轴承
核参数优化
状态辨识
分类精度
基于改进HHT能量熵和SVM的滚动轴承故障诊断
希尔伯特-黄变换
能量熵
支持向量机
滚动轴承
故障诊断
基于EEMD 和改进VPMCD 的滚动轴承故障诊断方法
改进VPMCD
EEMD方法
奇异值分解
滚动轴承
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进MPE与KELM的滚动轴承故障诊断
来源期刊 噪声与振动控制 学科 工学
关键词 故障诊断 多尺度排列熵 关联积分法 特征提取 核极限学习机 故障分类
年,卷(期) 2022,(1) 所属期刊栏目 信号处理与故障诊断
研究方向 页码范围 125-131
页数 7页 分类号 TH133.3|TP206+.3
字数 语种 中文
DOI 10.3969/j.issn.1006-1355.2022.01.020
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障诊断
多尺度排列熵
关联积分法
特征提取
核极限学习机
故障分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
噪声与振动控制
双月刊
1006-1355
31-1346/TB
大16开
上海市华山路1954号上海交通大学
4-672
1981
chi
出版文献量(篇)
4977
总下载数(次)
4
总被引数(次)
36734
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导