基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高短期电力负荷预测精度,提出了运用相似日选择与长短期记忆的短期负荷双向组合预测方法.首先,以关联度大小为标准,根据归一化后的待预测日气象因素序列确定数据集;然后,使用长短期记忆神经网络分别进行横向预测和纵向预测,利用最小方差法计算每一个采样点的横向、纵向预测值的权重,得出双向组合预测结果;最后,充分考虑气象因素对负荷数据的影响,利用最小方差法兼顾负荷数据的时序性、日周期规律性和非线性三者之间的关系进行实验,实验结果表明该方法的预测效果更佳.
推荐文章
基于相似日的支持向量机短期负荷预测
负荷预测
最小二乘支持向量机
细菌趋化
相似日
日期距离
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
基于SSA-LSTM网络的电力系统短期负荷预测
长短期记忆神经网络
麻雀搜索算法
组合优化预测模型
负荷预测
基于LSTM模型的短期负荷预测
短期负荷预测
LSTM神经网络
工业用户
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 运用相似日和LSTM的短期负荷双向组合预测
来源期刊 电力系统及其自动化学报 学科 工学
关键词 短期负荷预测 相似日 横向、纵向预测 组合预测 最小方差
年,卷(期) 2022,(1) 所属期刊栏目 学术论文|Theoretical Research
研究方向 页码范围 93-99
页数 7页 分类号 TM715|TP183
字数 语种 中文
DOI 10.19635/j.cnki.csu-epsa.000671
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
相似日
横向、纵向预测
组合预测
最小方差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统及其自动化学报
月刊
1003-8930
12-1251/TM
大16开
天津市南开区天津大学电气与自动化工程学院
1989
chi
出版文献量(篇)
3958
总下载数(次)
6
论文1v1指导