基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对分心驾驶行为识别,提出基于ResNet18的多标签分心驾驶行为识别方法和基于迁移学习的多分类分心驾驶行为识别方法.首先基于ResNet18模型连接多个全连接层,对多种行为进行多标签识别;然后利用迁移学习,提出基于改进的ResNet34模型进行多分类识别.实验结果表明:文章提出的改进算法对分心驾驶行为识别的准确率最高可达93.5%,该改进算法对分心驾驶识别具有较好的可行性和有效性.
推荐文章
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于卷积神经网络的驾驶辅助系统设计
卷积神经网络
驾驶辅助系统
导航架构
巡航控制
激活函数
行车图像
Job请求
辅助波
基于双流卷积神经网络的改进人体行为识别算法
人体行为识别
深度学习
双流卷积神经网络
模型融合
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的分心驾驶行为识别
来源期刊 机电技术 学科 工学
关键词 深度学习 卷积神经网络 迁移学习 模式识别 分心驾驶行为
年,卷(期) 2022,(1) 所属期刊栏目 数字化与智能化
研究方向 页码范围 33-37
页数 5页 分类号 TP181
字数 语种 中文
DOI 10.19508/j.cnki.1672-4801.2022.01.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
迁移学习
模式识别
分心驾驶行为
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电技术
双月刊
1672-4801
35-1262/TH
大16开
福州市六一中路115号
1977
chi
出版文献量(篇)
3970
总下载数(次)
13
总被引数(次)
8918
论文1v1指导