基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在滚动轴承的实际运行过程中,其故障信号往往容易淹没于强背景噪声中,使其故障的类型难以得到识别,针对这一问题,提出了一种基于固有时间尺度分析(ITD)和多点最优调整的最小熵解卷积(MOMEDA)相结合的联合降噪方法,并将其应用于滚动轴承的故障诊断中.首先,用ITD算法对滚动轴承故障原始信号进行了分解,得到了多个固有旋转分量(PRC);其次,依据相关系数和峭度原则,挑选出了与原信号相关度较大的PRC分量,并对其进行了重构;然后,采用MOMEDA算法对重构信号进行了进一步降噪处理,完成了有用信号与噪声信号的分离;最后,对降噪后的信号进行了包络解调分析,提取出了故障特征频率,诊断出了轴承故障具体位置;此外,为了验证该方法的有效性,通过ITD与局域均值分解(LMD)、MOMEDA与最大相关峭度解卷积(MCKD)算法对仿真信号进行了对比分析,并对轴承外圈进行了实例分析.研究结果表明:相比于ITD-MCKD方法,基于ITD-MOMEDA联合降噪方法的故障诊断准确率提高4.3%,能更有效地去除强噪声,并成功地检测出轴承的故障类型.
推荐文章
基于ITD-KICA盲分离降噪的滚动轴承故障特征提取
滚动轴承
时间固有尺度分解(ITD)
核独立分量分析(KICA)
特征提取
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ITD-MOMEDA联合降噪的滚动轴承故障诊断研究
来源期刊 机电工程 学科 工学
关键词 滚动轴承 轴承故障 固有时间尺度分析 多点最优调整的最小熵解卷积 固有旋转分量 包络解调分析
年,卷(期) 2022,(2) 所属期刊栏目 机械零件及传动装置|Mechanical Parts and Transmission
研究方向 页码范围 217-223
页数 7页 分类号 TH133.33
字数 语种 中文
DOI 10.3969/j.issn.1001-4551.2022.02.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
轴承故障
固有时间尺度分析
多点最优调整的最小熵解卷积
固有旋转分量
包络解调分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机电工程
月刊
1001-4551
33-1088/TM
大16开
浙江省杭州市大学路高官弄9号
32-68
1971
chi
出版文献量(篇)
6489
总下载数(次)
9
总被引数(次)
41536
论文1v1指导