基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
DBSCAN算法的Eps和MinPts参数需要人为设定,取值不当会导致聚类结果准确度不高,且在密度分布差异大的数据集上,由于参数的全局性,错误地应用于不同密度的簇,导致不能正确地发现簇.针对以上问题,提出一种多密度自适应参数确定算法,利用经过去噪衰减后的数据集的自身分布特性生成候选Eps和MinPts参数列表,并在簇数趋于稳定的区间内根据去噪级别选取对应的Eps和MinPts作为初始密度阈值.对在该密度阈值条件下聚类产生的噪声数据使用同样的方法生成候选参数列表,选取最优参数,得到新密度阈值,循环该步骤直到噪声数据的数量或密度阈值低于一定程度为止.将不同密度阈值下的聚类结果进行合并.实验结果表明,该算法能够自适应地选取合适的多密度阈值,并在密度分布差异大的数据集上有很好的聚类效果.
推荐文章
自适应确定DBSCAN算法参数的算法研究
DBSCAN算法
自适应
参数寻优
K-平均最近邻法
Greedy DBSCAN:一种针对多密度聚类的DBSCAN改进算法
多密度
贪心策略
相对稠密度
邻域查询
噪声数据
DBSCAN聚类
基于DBSCAN的自适应GSA算法研究
GSA算法
DBSCAN
自适应策略
启发式优化算法
基于区域划分的DBSCAN多密度聚类算法
区域划分
多密度
相对密度差
DBSCAN聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多密度自适应确定DBSCAN算法参数的算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 DBSCAN算法 去噪衰减 多密度阈值 自适应
年,卷(期) 2022,(2) 所属期刊栏目 理论与研发|Theory, Research and Development
研究方向 页码范围 78-85
页数 8页 分类号 TP301
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2012-0476
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
DBSCAN算法
去噪衰减
多密度阈值
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
论文1v1指导