基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提升基层网络数据挖掘精度与效率,有效应用基层网络数据提供帮助,提出基于深度学习的基层网络数据个性化挖掘算法,设计基于模糊神经网络的基层网络数据个性化挖掘算法过程,通过数据准备阶段清洗、选取及转化初始基层网络数据,得到高精度完整统一的待挖掘基层网络数据,划分其为训练组与测试组,构建包含输入层、模糊输入层、隐含层、模糊输出层及期望输出层的五层模糊神经网络,运用训练组基层网络数据训练该模糊神经网络,裁剪掉训练后模糊神经网络内的冗余权值规则,提取出最大权值规则,运用该规则对测试组基层网络数据实施挖掘.实验结果表明,上述算法实际应用中收敛速度较高,在训练与测试速度方面具有较大优势,可实现高精确、高查全及高重合度的精准挖掘,为基层网络数据的有效利用奠定基础.
推荐文章
基于Web挖掘的个性化网络学习系统设计
Web挖掘
个性化
推荐系统
基于数据挖掘技术的个性化学习国内现状研究
数据挖掘
个性化学习
文献分析
基于数据挖掘技术的图书馆个性化快速推荐算法研究
数据挖掘
关联规则运算
Apriori算法
算法改进
个性化推荐
关联分析
基于读者个性化特征数据挖掘的图书馆书目推荐
图书馆服务
个性化特征
数据关联规则
数据挖掘
图书馆书目
书目推荐
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的基层网络数据个性化挖掘算法
来源期刊 计算机仿真 学科 工学
关键词 深度学习 模糊神经网络 基层网络数据 挖掘 网络裁剪 规则提取
年,卷(期) 2022,(1) 所属期刊栏目 仿真方法与算法
研究方向 页码范围 318-321,332
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.1006-9348.2022.01.067
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
模糊神经网络
基层网络数据
挖掘
网络裁剪
规则提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导