基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,深度学习技术广泛应用于侧信道攻击(side channel attack,SCA)领域.针对在基于深度学习的侧信道攻击中训练集数量不足的问题,提出了一种用于侧信道攻击的功耗轨迹扩充技术,使用条件生成对抗网络(conditional generate against network,CGAN)实现对原始功耗轨迹的扩充,并使用深度神经网络进行侧信道攻击.通过选择密码运算中间值的汉明重量(hamming weight,HW)作为CGAN的约束条件,将CGAN生成模拟功耗轨迹作为多层感知器(multi-layer perceptron,MLP)神经网络的训练数据,构建模型实现密钥恢复.通过实验对不同类型训练集的攻击效果进行比较,结果表明,使用CGAN生成的功耗轨迹和原始功耗轨迹具有相同的特征,使用扩充后的功耗轨迹对MLP神经网络进行训练和测试,训练精度和测试精度分别提高15.3%和14.4%.
推荐文章
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件生成对抗网络的漫画手绘图上色方法
漫画
手绘图
上色
深度学习
条件生成对抗网络
生成对抗网络研究综述
GAN
神经对抗网络
二人博弈
人工智能
深度学习
生成式模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于条件生成对抗网络的侧信道攻击技术研究
来源期刊 计算机工程与应用 学科 工学
关键词 侧信道攻击 深度学习 条件生成对抗网络 多层感知器
年,卷(期) 2022,(6) 所属期刊栏目 网络、通信与安全|Network, Communication and Security
研究方向 页码范围 110-117
页数 8页 分类号 TP309.7
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.2009-0397
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
侧信道攻击
深度学习
条件生成对抗网络
多层感知器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导