基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用传统故障诊断方法对滚动轴承进行诊断时存在故障特征提取困难以及提取特征不明显的问题.针对此问题,提出了 一种基于鲁棒局部均值分解(robust local mean decomposition,RLMD)以及二阶瞬态提取变换(second-order transient-ex-tracting transform,STET)的故障特征提取方法.首先对滚动轴承故障信号进行RLMD处理,得到一系列故障信息丰富的特征分量.然后利用二阶瞬态提取变换善于提取信号中强脉冲分量的特点,对筛选出的分量进行二阶瞬态提取变换以提取脉冲故障特征进行诊断分析.实验分析结果表明,该方法能够有效地提取出故障特征,且特征提取效果优于传统诊断方法,适用于滚动轴承故障诊断.
推荐文章
基于局部均值分解和K近邻算法的滚动轴承故障诊断方法
滚动轴承
局部均值分解
K近邻算法
特征提取
故障诊断
基于角域经验小波变换的滚动轴承故障诊断
变转速
滚动轴承
故障诊断
角域经验小波变换
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
基于经验模式分解的滚动轴承故障诊断方法
经验模式分解
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于鲁棒局部均值分解与二阶瞬态提取变换的滚动轴承故障诊断
来源期刊 科学技术与工程 学科 工学
关键词 鲁棒局部均值分解 二阶瞬态提取变换 滚动轴承 故障诊断
年,卷(期) 2022,(1) 所属期刊栏目 论文|Papers
研究方向 页码范围 157-165
页数 9页 分类号 TH133.3
字数 语种 中文
DOI 10.3969/j.issn.1671-1815.2022.01.018
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
鲁棒局部均值分解
二阶瞬态提取变换
滚动轴承
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
科学技术与工程
旬刊
1671-1815
11-4688/T
大16开
北京市海淀区学院南路86号
2-734
2001
chi
出版文献量(篇)
30642
总下载数(次)
83
总被引数(次)
113906
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导