基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种新的信度网结构在线学习算法.其核心思想是,利用新样本对信度网结构和参数不断进行增量式修改,以逐步逼近真实模型.本算法分为两个步骤:首先分别利用参数增量修改律和添加边、删除边、边反向3种结构增量修改律,并结合新采集的样本,对当前信度网模型进行增量式修改;然后利用结果选择判定准则,从增量式修改所得的后代信度网集合中选择一个合适的信度网作为本次迭代结果.该结果在与当前样本的一致性和与上一代模型的距离之间达到一个合理的折衷.实验结果表明,本算法能有效地实现信度网结构的在线学习.由于在线学习不需要历史样本,且能够不断适应问题域的变化,适合于对具有时变性的领域进行信度网建模.
推荐文章
基于互信息和测度学习信度网结构
信度网
信度网结构学习
互信息
结构学习测度
基于主动学习的有监督在线多核学习算法
主动学习
在线学习
多核学习
一种在线向量机增强学习算法
在线
向量机
增强学习
在线学习算法综述
在线学习
优化理论
概念漂移
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 信度网结构在线学习算法
来源期刊 软件学报 学科 工学
关键词 人工智能 信度网 机器学习 在线学习
年,卷(期) 2002,(12) 所属期刊栏目
研究方向 页码范围 2297-2304
页数 8页 分类号 TP18
字数 4944字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 汪成亮 重庆大学自动化学院 64 655 13.0 21.0
2 沈一栋 重庆大学计算机科学与工程学院 14 308 9.0 14.0
3 刘启元 重庆大学计算机科学与工程学院 6 206 6.0 6.0
4 张聪 重庆大学计算机科学与工程学院 16 342 8.0 16.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (9)
同被引文献  (13)
二级引证文献  (26)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1978(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2005(4)
  • 引证文献(4)
  • 二级引证文献(0)
2006(1)
  • 引证文献(0)
  • 二级引证文献(1)
2007(2)
  • 引证文献(0)
  • 二级引证文献(2)
2008(3)
  • 引证文献(1)
  • 二级引证文献(2)
2009(3)
  • 引证文献(1)
  • 二级引证文献(2)
2010(3)
  • 引证文献(1)
  • 二级引证文献(2)
2011(3)
  • 引证文献(0)
  • 二级引证文献(3)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
人工智能
信度网
机器学习
在线学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
总被引数(次)
226394
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导