基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用振动分析法来进行滚动轴承元件的故障诊断.通过带通滤波、包络谱分析和小波包分析提取了反映滚动轴承故障的5个频域特征参数,同时还提取了对轴承早期冲击故障较敏感的5个时域指标.基于上述10个故障特征值,采用BP神经网络、基于遗传算法的RBF神经网络进行故障分类训练.试验结果表明:上述10个特征值对不同的滚动轴承故障非常敏感;BP网络和基于遗传算法的RBF网络都能有效地分类不同故障;基于遗传算法的RBF网络在训练时间、训练误差以及识别精度上优于BP网络.试验证明了上述方法在滚动轴承故障诊断中的有效性.
推荐文章
滚动轴承故障诊断的案例推理方法
案例推理
滚动轴承
故障诊断
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种用于滚动轴承故障诊断的方法
来源期刊 吉林大学学报(工学版) 学科 工学
关键词 滚动轴承 小波包 故障诊断 神经网络 包络分析
年,卷(期) 2004,(z1) 所属期刊栏目 故障诊断与容错技术
研究方向 页码范围 220-224
页数 5页 分类号 TH133
字数 3782字 语种 中文
DOI 10.3969/j.issn.1671-5497.2004.z1.052
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王桂增 清华大学自动化系 58 1687 20.0 40.0
2 吕琛 清华大学自动化系 11 107 6.0 10.0
3 张泽宇 中国科学院长春光学精密机械与物理研究所 9 21 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (4)
参考文献  (2)
节点文献
引证文献  (5)
同被引文献  (4)
二级引证文献  (9)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(0)
  • 二级引证文献(2)
2010(3)
  • 引证文献(1)
  • 二级引证文献(2)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(4)
  • 引证文献(1)
  • 二级引证文献(3)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
滚动轴承
小波包
故障诊断
神经网络
包络分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(工学版)
双月刊
1671-5497
22-1341/T
大16开
长春市人民大街5988号
12-46
1957
chi
出版文献量(篇)
4941
总下载数(次)
5
总被引数(次)
43316
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
论文1v1指导