基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文中主要解决传统的ID3算法不能处理增量数据集构造决策树的问题.在传统ID3决策树算法和原有增量算法的基础上,利用信息论中熵变原理的特点,对与增量决策树算法相关的三个定理进行相应的改进,在理论上证明了改进的增量决策树算法的有效性和可靠性.同时对增量决策树算法和ID3算法的复杂度进行了对比分析,得出增量决策树算法的实例费用和信息熵费用都高于ID3算法的结论.最后通过一个实验证明,改进的增量决策树算法能够构造出与ID3算法形态基本相同的决策树.
推荐文章
改进的多关系决策树算法
多关系数据挖掘
多关系决策树
元组标志传播
背景属性
新型偏好敏感决策树算法
决策树
偏好敏感
偏好度
属性选择
代价敏感
分类
数据挖掘中决策树算法的探讨
数据挖掘
决策树
逆向快速决策树算法概要
决策树
分类
学习
推理
规则
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 增量决策树算法研究
来源期刊 微机发展 学科 工学
关键词 数据挖掘 决策树 增量算法
年,卷(期) 2005,(2) 所属期刊栏目 智能与算法研究
研究方向 页码范围 63-66
页数 4页 分类号 TP301.6
字数 3591字 语种 中文
DOI 10.3969/j.issn.1673-629X.2005.02.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 尹阿东 北京科技大学管理学院 10 147 7.0 10.0
2 高学东 北京科技大学管理学院 143 1129 18.0 24.0
3 龙誉 北京科技大学管理学院 4 78 4.0 4.0
4 宫雨 北京科技大学管理学院 7 73 5.0 7.0
5 郭秀颖 哈尔滨工业大学管理学院 2 18 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (9)
同被引文献  (5)
二级引证文献  (9)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(2)
  • 引证文献(1)
  • 二级引证文献(1)
2008(3)
  • 引证文献(2)
  • 二级引证文献(1)
2009(1)
  • 引证文献(0)
  • 二级引证文献(1)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据挖掘
决策树
增量算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导