基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
粒子群优化算法由于其高效、容易理解、易于实现,在很多领域得到了应用.网页分类是网络信息检索研究的关键技术之一,在对网页的表示时,将Web页面分解为不同的部分,之后迭代使用SVM算法构造分类器.由于PSO算法是一种基于迭代的优化工具,对训练过程中迭代产生的网页分类器进行优化组合,产生最终分类器,同时也增强了分类器的自适应性.实验结果表明,通过对迭代产生的分类器进行优化组合,以及对网页结构的划分,寻找并利用网页集中蕴藏的规律综合计算特征权值,大大提高了网页分类的正确率和F-measure值,所以这种方法是有效的、稳健的和实用的.
推荐文章
一种基于混沌粒子群算法的网页分类规则抽取方法
网页分类
规则抽取
混沌粒子群
基于分类思想的改进粒子群优化算法
粒子群优化
参数改进
适度值
适度值均值
适度值标准差
粒子分类
有效经验
基于粒子群优化的模糊K-Means目标分类算法
粒子群
模糊
分类
K均值
聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化算法的网页分类技术
来源期刊 计算机研究与发展 学科 工学
关键词 网页分类 粒子群优化算法 支持向量机
年,卷(期) 2006,(z3) 所属期刊栏目 Web与数据库
研究方向 页码范围 33-38
页数 6页 分类号 TP391
字数 5538字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赫枫龄 吉林大学计算机科学与技术学院 34 590 13.0 24.0
2 彭涛 吉林大学计算机科学与技术学院 30 131 8.0 11.0
3 左万利 2 11 2.0 2.0
4 张长利 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (6)
共引文献  (815)
参考文献  (4)
节点文献
引证文献  (6)
同被引文献  (18)
二级引证文献  (20)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(5)
  • 引证文献(3)
  • 二级引证文献(2)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(2)
  • 引证文献(0)
  • 二级引证文献(2)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
网页分类
粒子群优化算法
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机研究与发展
月刊
1000-1239
11-1777/TP
大16开
北京中关村科学院南路6号
2-654
1958
chi
出版文献量(篇)
7553
总下载数(次)
35
总被引数(次)
164870
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导