基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出一种基于支持向量机的轴承表面缺陷检测算法,该算法把轴承中的非缺陷区域和缺陷区域分别看作两种不同的纹理模式,利用主成分分析法(PCA)对图像进行降维处理,然后用支持向量机方法对两类不同的样本采样学习,进行分类判断.实验结果表明,该算法能够较好地实现轴承缺陷的检测分类,有着深入研究的价值.
推荐文章
基于支持向量机的钢板缺陷分类问题的研究
特征提取
主成分分析
支持向量机
Keras
神经网络
机器学习
支持向量机超声缺陷识别法的研究
超声波检测
小波包分析
支持向量机
缺陷识别
基于支持向量机的瑕疵检测算法
瑕疵检测
支持向量机
灰度直方图
基于支持向量机的垃圾标签检测模型
垃圾标签
社会化标签系统
支持向量机
检测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的轴承表面缺陷检测
来源期刊 现代制造工程 学科 工学
关键词 缺陷检测 主成分分析 支持向量机
年,卷(期) 2006,(9) 所属期刊栏目 仪器仪表/检测/监控
研究方向 页码范围 90-92
页数 3页 分类号 TH16
字数 2875字 语种 中文
DOI 10.3969/j.issn.1671-3133.2006.09.030
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (32)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (32)
二级引证文献  (15)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(2)
  • 二级引证文献(1)
2016(4)
  • 引证文献(2)
  • 二级引证文献(2)
2017(4)
  • 引证文献(1)
  • 二级引证文献(3)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
研究主题发展历程
节点文献
缺陷检测
主成分分析
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代制造工程
月刊
1671-3133
11-4659/TH
大16开
北京市西城区核桃园西街36号301A
2-431
1978
chi
出版文献量(篇)
9080
总下载数(次)
14
总被引数(次)
50123
论文1v1指导