基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文阐述了使用BP神经网络压缩图像的方法和粒子群算法(PSO)的原理。为提高BP算法的训练速度和图像重建质量.本文设计了一种利用PSO—BP网络进行图像压缩的算法,该算法结合了PSO算法和BP算法的优点,将BP网络的训练过程分为两个阶段。实验表明,利用该算法压缩图像,不仅速度较快,而且重建后的图像质量有明显提高。
推荐文章
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
基于子块分类的BP神经网络图像压缩
神经网络
图像压缩
子块分类
视觉特征
基于GPU的PSO-BP神经网络DOA估计
波达方向估计
粒子群优化
神经网络
图形处理单元
统一计算设备架构
基于BP神经网络的雾天图像复原算法
雾天图像
图像复原
神经网络
粒子群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO—BP神经网络的图像压缩算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 BP网络 图像压缩 PSO算法
年,卷(期) 2007,(12) 所属期刊栏目
研究方向 页码范围 1409-1411
页数 3页 分类号 TP183
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王书宇 5 17 3.0 4.0
2 施宁 2 2 1.0 1.0
3 李子杰 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP网络
图像压缩
PSO算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
论文1v1指导